Ataxia telangiectasia mutated deficiency affects astrocyte growth but not radiosensitivity.
نویسندگان
چکیده
The cancer-prone neurodegenerative disorder, ataxia telangiectasia (A-T), results from mutations of ATM (ataxia telangiectasia mutated). Individuals with A-T are also hypersensitive to ionizing radiation (IR). Cultured cells from A-T individuals or Atm-/- mice have cell cycle and growth defects and are generally considered radiosensitive. However, it has been shown recently that cell populations in the Atm-/- central nervous system are radioresistant. To define specific IR sensitivities of neural populations, we analyzed Atm-/- astrocytes. Here we show that Atm-/- astrocytes exhibit premature senescence, express constitutively high levels of p21, and have impaired p53 stabilization. However, in contrast to radiosensitive Atm-/- fibroblasts and radioresistant Atm-/- neurons, survival of Atm-/- astrocytes after IR was similar to wild-type astrocytes. Additionally, p53-null astrocytes, but not fibroblasts, were moderately more radioresistant than their wild-type counterparts, suggesting that the deficit in p53 stabilization observed in Atm-null cells is not a measure of radiation susceptibility. Thus, in astrocytes, the function of Atm in cellular growth and radiosensitivity is distinct. These data may have implications for ATM disruption strategies as a radiosensitizing treatment for brain tumors.
منابع مشابه
The Role of the Neuro-Astro-Vascular Unit in the Etiology of Ataxia Telangiectasia
The growing recognition that brain pathologies do not affect neurons only but rather are, to a large extent, pathologies of glial cells as well as of the vasculature opens to new perspectives in our understanding of genetic disorders of the CNS. To validate the role of the neuron-glial-vascular unit in the etiology of genome instability disorders, we report about cell death and morphological as...
متن کاملFunctional link between BLM defective in Bloom's syndrome and the ataxia-telangiectasia-mutated protein, ATM.
Chromosome aberrations, genomic instability, and cancer predisposition are hallmarks of a number of syndromes in which the defective genes recognize and/or repair DNA damage or are involved in some aspect of DNA processing. We report here direct interaction between BLM, mutated in Bloom's Syndrome (BS), and ATM, mutated is ataxia-telangiectasia, and we have mapped the sites of interaction. Full...
متن کاملInhibition of Transforming Growth Factor-B1 Signaling Attenuates Ataxia Telangiectasia Mutated Activity in Response to Genotoxic Stress
Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor B (TGFB)-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGFB inhibition impedes the canonical cellular DNA damage s...
متن کاملInhibition of transforming growth factor-beta1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress.
Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor beta (TGFbeta)-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGFbeta inhibition impedes the canonical cellular DNA...
متن کاملOxidative stress in ataxia telangiectasia.
Ataxia telangiectasia is one of a group of recessive hereditary genomic instability disorders and is characterized by progressive neurodegeneration, immunodeficiency and cancer susceptibility. Heterozygotes for the mutated gene are more susceptible to cancer and to ischaemic heart disease. The affected gene, ATM (ataxia telangiectasia mutated), has been cloned and codes for a protein kinase (AT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 59 20 شماره
صفحات -
تاریخ انتشار 1999